Gaussian kernel definition (3D version). A kernelS function cannot be efficiently provided, since it requires computing erf(q)
More...
|
float | kernelW (float q) |
| The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
|
|
float | kernelF (float q) |
| The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
|
|
float | kernelH (float q) |
| The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \).
|
|
Gaussian kernel definition (3D version). A kernelS function cannot be efficiently provided, since it requires computing erf(q)
◆ _KERNEL_H_INCLUDED_
#define _KERNEL_H_INCLUDED_ |
◆ iM_PI
#define iM_PI 0.318309886f |
\( \frac{1}{\pi} \) value.
◆ M_PI
#define M_PI 3.14159265359f |
◆ kernelF()
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) =
\frac{\mathbf{r_j} - \mathbf{r_i}}{h} \cdot
F \left(\mathbf{r_j} - \mathbf{r_i}; h\right)
\).
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Kernel amount
◆ kernelH()
The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \).
The result returned by this function should be multiplied by \( \frac{1}{h^{d + 1}} \), where d is 2,3 for 2D and 3D respectively.
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Kernel partial derivative factor
- Note
- This function is useful for variable resolution (non-constant kernel height)
- See also
- Iason Zisis, Bas van der Linden, Christina Giannopapa and Barry Koren, On the derivation of SPH schemes for shocks through inhomogeneous media. Int. Jnl. of Multiphysics (2015).
◆ kernelW()
The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Kernel value.