Wendland kernel definition (3D version).
More...
|
const float | kernelW (const float q) |
| The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
|
|
const float | kernelF (const float q) |
| The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
|
|
const float | kernelS_P (const float q) |
| An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
|
|
const float | _Omega (const float a, const float b) |
| Helper function to compute the solid angle of a rectangular patch, with a corner placed in the projection of the origin into the patch plane.
|
|
const float | kernelS_D (const float d, const float t, const float b, const float s) |
|
Wendland kernel definition (3D version).
◆ _KERNEL_H_INCLUDED_
#define _KERNEL_H_INCLUDED_ |
◆ iM_PI
#define iM_PI 0.318309886f |
\( \frac{1}{\pi} \) value.
◆ M_PI
#define M_PI 3.14159265359f |
◆ _Omega()
const float _Omega |
( |
const float |
a, |
|
|
const float |
b |
|
) |
| |
|
inline |
Helper function to compute the solid angle of a rectangular patch, with a corner placed in the projection of the origin into the patch plane.
b A | |XXXXXXX |XXXXXXX -+--------—> t
- Parameters
-
d | Normal distance of the patch to the origin. |
a | Width of the rectangular patch. |
b | Height of the rectangular patch. |
- Returns
- Equivalent kernel divergent part
- See also
- kernelS_D
◆ kernelF()
const float kernelF |
( |
const float |
q | ) |
|
|
inline |
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) =
\frac{\mathbf{r_j} - \mathbf{r_i}}{h} \cdot
F \left(\mathbf{r_j} - \mathbf{r_i}; h\right)
\).
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Kernel amount
◆ kernelS_D()
const float kernelS_D |
( |
const float |
d, |
|
|
const float |
t, |
|
|
const float |
b, |
|
|
const float |
s |
|
) |
| |
|
inline |
◆ kernelS_P()
const float kernelS_P |
( |
const float |
q | ) |
|
|
inline |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
For practical purposes, the kernel computation is split in 2 parts: The polynomial part, where trucation errors are acceptable, and the divergent part, which requires an analytical solution. This function computes the polynomial part.
The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) =
\frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Equivalent kernel polynomial part
- See also
- kernelS_D
◆ kernelW()
const float kernelW |
( |
const float |
q | ) |
|
|
inline |
The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
- Parameters
-
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
- Returns
- Kernel value.