AQUAgpusph 4.1.2
Loading...
Searching...
No Matches
Macros | Functions
CubicSpline3D.hcl File Reference

Cubic spline kernel definition (3D version). More...

Macros

#define _KERNEL_H_INCLUDED_
 
#define M_PI   3.14159265359f
 
#define iM_PI   0.318309886f
 

Functions

float kernelW (float q)
 The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
 
float kernelF (float q)
 The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
 
float kernelH (float q)
 The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \).
 
float kernelS (float q)
 An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
 

Detailed Description

Cubic spline kernel definition (3D version).

Macro Definition Documentation

◆ _KERNEL_H_INCLUDED_

#define _KERNEL_H_INCLUDED_

◆ iM_PI

#define iM_PI   0.318309886f

\( \frac{1}{\pi} \) value.

◆ M_PI

#define M_PI   3.14159265359f

\( \pi \) value.

Function Documentation

◆ kernelF()

float kernelF ( float  q)

The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).

The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) = \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \cdot F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).

Parameters
qNormalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \).
Returns
Kernel amount

◆ kernelH()

float kernelH ( float  q)

The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \).

The result returned by this function should be multiplied by \( \frac{1}{h^{d + 1}} \), where d is 2,3 for 2D and 3D respectively.

Parameters
qNormalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \).
Returns
Kernel partial derivative factor
Note
This function is useful for variable resolution (non-constant kernel height)
See also
Iason Zisis, Bas van der Linden, Christina Giannopapa and Barry Koren, On the derivation of SPH schemes for shocks through inhomogeneous media. Int. Jnl. of Multiphysics (2015).

◆ kernelS()

float kernelS ( float  q)

An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.

The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) = \frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)

Parameters
qNormalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \).
Returns
Equivalent kernel

◆ kernelW()

float kernelW ( float  q)

The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).

Parameters
qNormalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \).
Returns
Kernel value.